

Cartographie optique du Myélome : Retour d'expérience

Etienne LESCROART

Julien MERLIN

Myélome Multiple (MM)

Envahissement médullaire par des plasmocytes anormaux

Anomalies de cytogénétiques pronostiques et théranostiques

- ➢Groupe hyperdiploïde (~55%)
 - > Trisomie des chromosomes impairs
- ➤Groupe pseudodiploïde
 - > t(4;14);t(11;14);t(14;16);t(14,20),t(6;14) impliquant le gène IGH
- ➢Puis des marqueurs plutôt secondaire :
 - del(17p) avec perte TP53
 - ➤ Gain 1q21, perte 1p32

Technique d'analyse

Caryotype n'est plus la technique de choix

Tri cellulaire des plasmocytes (CD138) puis détection des marqueurs :

➢FISH ciblée : 17p, 1p/1q, t(4;14),t(11;14)

➢ Technique moléculaire (NGS, CGH, SNParray)

Limitation des marqueurs testés par la faible richesse des cellules post-tri

Technique d'analyse

Caryotype n'est plus la technique de choix

Tri cellulaire des plasmocytes (CD138) puis détection des marqueurs :

➢FISH ciblée : 17p, 1p/1q, t(4;14),t(11;14)

➢ Technique moléculaire (NGS, CGH, SNParray)

Limitation des marqueurs testés par la faible richesse des cellules post-tri

Place du caryotype optique ?

Tri magnétique par le CD138

CD138

CD138

COG Caryotype Optique du Génome

COG Caryotype Optique du Génome

Problématique : Richesse en plasmocytes

sur 700 cas de MM triés, la médiane de plasmocytes récupérés se situe à 900 000 cellules.

Propositions :

1- utiliser une technique d'extraction issue des protocoles de liquides amniotiques permettant de descendre à 1M de cellules

2- utiliser la fraction négative du tri cellulaire pour compléter à 1M l'échantillon de plasmocytes triés

Objectif de l'étude

Fraction pure contrôle +

Objectif 1 : Réalisation d'une gamme de dilution pour valider la technique et choix de la dilution optimale

Objectif 2 : Validation des résultats sur une cohorte de patients en comparaison avec la FISH

Validation technique :

➤Gamme de dilution

Validation technique :

➤Gamme de dilution

- ➢ Fractions pures et mélanges
 - Culot sec
 - Envoi en carboglace

Résultat FISH de la gamme :

- Tri CD138 avec un rendement de 99%
- Résultat FISH :
 - t(11;14) IGH::CCND1 dans 96% des cellules
 - Gain d'un signal CCND1 dans 96% des cellules
 - Une délétion de 17p sous clonale dans 19% des cellules
 - Pas d'anomalie 1q21 ou 1p32

nuc ish(CDKN2C,CKS1B)x2[200],(CCND1x4,IGHx3)(CCND1 con IGHx2)[192/200], (TP53x1,D17Z1x2)[57/300].

Résultat COG fraction pure

Résultat FISH :

t(11;14) IGH::CCND1 dans 96% des cellules
Gain d'un signal CCND1 dans 96% des cellules
Une délétion de 17p sous clonale dans 19% des cellules
Pas d'anomalie 1q21 ou 1p32

Résultat COG fraction pure

Résultat FISH :

t(11;14) IGH::CCND1 dans 96% des cellules
Gain d'un signal CCND1 dans 96% des cellules
Une délétion de 17p sous clonale dans 19% des cellules
Pas d'anomalie 1q21 ou 1p32

Anomalies en plus vues grâce à la COG :

del(13q) del(16q)

Résultat gamme - CNV

50% de CD138⁺:

- ✓ Détection des SV (faibles tailles) et CNV clonaux : t(11;14)
- ✓ Détection des CNV sous clonaux > 20% des

25%

12,5%

0%

50%

Cohorte de validation :

➢ Mélange à 50% des fractions pures

- Culot sec en carboglace
- n=13 (patients nouvellement diagnostiqués)

➢Résultats FISH (routine)

- TP53/17cen
- 1p/1q
- t(4;14) +/-t(11;14)

Résultats FISH

Comparaison COG

والمعارية المعارية والمحاصر المعاجز والمعارية والمعا

• Gain 1q non trouvé (sous-clonal 15% FISH)

ada din kanan kana kanan kanan na mananaka kalakan na mana makan dina kana ina kana kana kana kana din kana

• t(11;14) avec des signaux FISH atypiques

(non retrouvée en NGS également)

- + : correspondance FISH et COG
- : Anomalie non retrouvée en COG

➢ Mélange CD138+ à 50%

• n= 13 patients

Moyenne de 72 évènements/patient

➢ Mélange CD138+ à 50%

• n= 13 patients

Moyenne de 72 évènements/patient

Circos Plot - Hyperdiploïdie

N. Pa	tient	1	2	3	4	5	6	7	8	9	10	11	12	13
Hyperdi	iploïdie		+		+		+		+					

Circos Plot - Hyperdiploïdie

N. Patient	1	2	3	4	5	6	7	8	9	10	11	12	13
Hyperdiploïdi	e	+		+		+		+					

Circos Plot - Hyperdiploïdie

N.	Patient	1	2	3	4	5	6	7	8	9	10	11	12	13
Нуре	rdiploïdie		+		+		+		+					

Circos Plot - CTH-like

N. Patient	1	2	3	4	5	6	7	8	9	10	11	12	13
CTH like	+	+	+		+								

Circos Plot - CTH-like

N. Patient	1	2	3	4	5	6	7	8	9	10	11	12	13
CTH like	+	+	+		+								

Circos Plot - CTH-like

N. Patient	1	2	3	4	5	6	7	8	9	10	11	12	13
CTH like	+	+	+		+								

Circos Plot – t(*IGH*)

N. Patient	1	2	3	4	5	6	7	8	9	10	11	12	13
t(<i>IGH</i>)			+		+		+		+	+	+		

Conclusion

➢ Problématique : Pauvreté du matériel d'analyse pour le Myélome Multiple

➤Validation de la technique pour 1.10⁶ de cellules

➢ Possibilité de descendre jusqu'à 50% de plasmocytes avec un seuil de détection à 20%

➢Outil pangénomique additionnel

> Détection de nombreuses autres anomalies non recherchées en FISH

> Hyperdiploïdie

> Autres translocations d'intérêt (ex: t(14;20),translocation MYC)

Chromothripsis-like

>Nouvelles valeurs pronostiques pour les anomalies récurrentes décrites

Proposition d'un nouveau processus d'analyses

Remerciements

- L'équipe de l'Institut de Génétique Médicale (CHU Lille)
 - ➢Pr Roche-Lestienne
 - ➢Dr Daudignon
 - ➢Dr Guermouche-Flament
 - ➢Dr Roynard
 - ➢Et tous nos collègues du laboratoire

➢Le support Bionano

Les laboratoires pour leurs échantillons

- Centre Henri Becquerel
 - Dr Penther
- CH de Versailles
 - Dr Terré
- ➤Groupe Biomnis
 - Dr Quilichini
 - Dr Petit
 - Mme Roumiguieres
- ➢Groupe Cerba
 - Dr Defasque
- ➤CHU d'Amiens
 - Dr Lestringant

Cas particulier t(11;14)

Cas particulier t(11;14)

43,X,-X,t(11;14)(q13;q32),-13,add(17)(p1?),-22[5] / 46,XX[15]

Cas particulier t(11;14)

Sonde IGH/CCND1 translocation double couleur Vysis-Abbott

43,X,-X,t(11;14)(q13;q32),-13,add(17)(p1?),-22[5] / 46,XX[15]

Cas particulier t(11;14)

43,X,-X,t(11;14)(q13;q32),-13,add(17)(p1?),-22[5] / 46,XX[15]

Sonde IGH/CCND1 translocation double couleur Vysis-Abbott

Cas particulier t(11;14)

43,X,-X,t(11;14)(q13;q32),-13,add(17)(p1?),-22[5] / 46,XX[15]